skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Peters, Jonas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Peters, Jonas; Sontag, David (Ed.)
    Exact dynamic programming algorithms for solving partially observable Markov decision processes (POMDPs) rely on a subroutine that removes, or “prunes,” dominated vectors from vector sets that represent piecewise-linear and convex value functions. The subroutine solves many linear programs, where the size of the linear programs is proportional to both the number of undominated vectors in the set and their dimension, which severely limits scalability. Recent work improves the performance of this subroutine by limiting the number of constraints in the linear programs it solves by incrementally generating relevant constraints. In this paper, we show how to similarly limit the number of variables. By reducing the size of the linear programs in both ways, we further improve the performance of exact algorithms for POMDPs, especially in solving problems with larger state spaces. 
    more » « less
  2. Peters, Jonas; Sontag, David (Ed.)
    Structured prediction of objects in spaces that are inherently difficult to search or compactly characterize is a particularly challenging task. For example, though bipartite matchings in two dimensions can be tractably optimized and learned, the higher-dimensional generalization—3D matchings—are NP-hard to optimally obtain and the set of potential solutions cannot be compactly characterized. Though approximation is therefore necessary, prevalent structured prediction methods inherit the weaknesses they possess in the two-dimensional setting either suffering from inconsistency or intractability—even when the approximations are sufficient. In this paper, we explore extending an adversarial approach to learning bipartite matchings that avoids these weaknesses to the three dimensional setting. We assess the benefits compared to margin-based methods on a three-frame tracking problem. 
    more » « less